Resource Sharing in Dataflow Circuits

Lana Josipovi¢*, Axel Marmet!, Andrea Guerrierif, and Paolo Ienne!
*ETH Ziirich, Switzerland, TEcole Polytechnique Fédérale de Lausanne, Switzerland

Abstract—To achieve resource-efficient hardware designs, HLS
tools share (i.e., time-multiplex) functional units among opera-
tions of the same type. This optimization is typically performed
together with operation scheduling to ensure the best possible
unit usage at each point in time. Dataflow circuits have emerged
as an alternative HLS approach to efficiently handle irregular
and control-dominated code. Yet, these circuits do not have
a predetermined schedule—in its absence, it is challenging to
determine which operations can share a functional unit without
a performance penalty. Furthermore, although sharing seems
to imply only some trivial circuitry, time-multiplexing units in
dataflow circuits may cause deadlock by blocking certain data
transfers and preventing operations from executing. In this paper,
we present a technique to automatically identify performance-
acceptable resource sharing opportunities in dataflow circuits
and we describe a sharing mechanism that achieves deadlock-
free dataflow designs. On benchmarks obtained from C code, we
show that our approach effectively implements resource sharing:
it results in significant area savings (i.e., a DSP reduction of up
to 81%) compared to dataflow circuits which do not support this
feature and matches the sharing capabilities of a state-of-the-art
HLS tool.

I. INTRODUCTION

Standard HLS approaches [29], [7] rely on static scheduling:
at compile time, they decide the clock cycles in which each
operation will execute and determine the number of functional
units to allocate. The goal is to obtain the best possible
schedule while reducing the resource requirements by sharing
functional units between operations used in different clock cy-
cles [25], [6], [30]. In contrast, dataflow or latency-insensitive
protocols [8], [11], [27], [13] implement dynamically sched-
uled circuits, in which components exchange data as soon as
all conditions for execution are satisfied. Due to this ability
to adapt the schedule at runtime to particular data and control
outcomes, dataflow circuits have recently been explored as an
efficient HLS approach to handle irregular applications [16].
Yet, this scheduling flexibility makes resource sharing chal-
lenging: in the absence of a predetermined schedule, the
cycle in which each operation executes is unknown. Hence,
dataflow approaches typically employ an individual unit for
each operation and result in area-expensive solutions.

The intuition on how to implement sharing in a dataflow
context is fairly straightforward: instead of relying on cycle
information on operation execution, one could consider sta-
tistical information on unit utilization—if a certain unit is,
on average, underutilized (i.e., not always busy computing),
it may be possible to share it with another underutilized
unit. However, on its own, this strategy does not consider
two crucial concerns: (1) Sharing may compromise some of
the fundamental functional properties of dataflow circuits;

978-1-6654-8332-2/22/$31.00©2022 IEEE

Loop BB

for (i =0; i < N; i++)

Circuit 1 a[i*x] - i*y;

S '
1
: End 55!

Fig. 1: Dataflow circuit and a possible resource sharing implementa-
tion. The multiplications could be computed using a single multiplier,
with input and output multiplexing logic. Yet, this mechanism on its
own does not guarantee that the circuit is deadlock-free nor that its
performance is optimal. The multiplication results are indicated as
Mop,iter (€.8., M2,1 is the result of operation M2 from iteration 1).

one needs to ensure that the resulting circuits are always
deadlock-free. (2) Sharing may postpone the execution of
some operation with respect to its execution in the original
dataflow circuit and, consequently, compromise performance;
one needs to evaluate and minimize this performance impact.

In this paper, we present a complete methodology to imple-
ment resource sharing in dataflow designs. We formulate the
necessary requirements to ensure deadlock-free execution and
implement a sharing mechanism accordingly. We then discuss
how to minimize the performance impact of delays caused
by sharing. We show that our technique results in up to 81%
DSP reduction with minimal or no impact on execution time
compared to dataflow circuits that do not implement sharing.
Our main purpose here is to make dataflow circuits competitive
in computational resource usage to standard HLS approaches
while profiting from the key advantages of dynamic schedul-
ing. To demonstrate that we have successfully achieved this
goal, we compare our circuits with statically scheduled HLS
designs and show that they employ the exact same number of
computational units (i.e., DSP blocks).

II. MOTIVATION

To illustrate the challenges of resource sharing in dataflow
circuits, consider the example in Figure 1. This circuit has
no centralized controller—all dataflow units are connected to
their predecessor and successor units with handshake signals
that regulate the flow of data (i.e., tokens); each operation
executes as soon as it is ready and its inputs become available.

The execution starts when a token enters through the starting
point; a new loop iteration is triggered as soon as a token
reenters the loop body through the cyclic path (in this example,
every second clock cycle because of two registers, Buff 1 and
Buff 2, on the cyclic path through the merge and the branch).
The loop has two pipelined, 4-stage multipliers; all other units,
apart from the buffers, are combinational. Since a new loop
iteration starts every second cycle, the two multiplications
could be performed using a single multiplier. An intuitive
implementation is shown on the right—the merge and mux
steer one set of input tokens at a time into the shared unit (as
the figure indicates, these units must communicate to ensure
that they always accept the matching operands from their
predecessors). The branch at the output ensures that the result
is sent to the appropriate successor, depending on the origin
of the operands, communicated by the merge through a FIFO.
Surprisingly, this implementation does not guarantee a func-
tional circuit: in this example, the store needs both operands
(i.e., both the address and the data) to execute; it therefore
stalls the available operand (m; 1, i.e., the result of M1 of the
first iteration) while it waits for the second operand (mg 1,
i.e., the result of M2). However, because of the stall of m; 1,
meo,1 Will never be able to exit the shared unit and arrive to the
store, therefore causing deadlock. Such problems are absent by
construction in elementary dataflow circuits [16] where each
operation uses an individual unit and only a single token per
loop iteration is transferred from one unit to another. However,
introducing sharing compromises this property; it is crucial
that we develop a sharing mechanism that handles this issue
and ensures the absence of deadlock in every possible case.

III. BACKGROUND AND RELATED WORK

In this section, we describe dataflow circuits and discuss
how existing performance analysis techniques can be used to
identify sharing opportunities in dataflow designs.

A. Dataflow Circuits

Several authors [16], [12], [26], [3] generate dataflow cir-
cuits from high-level programs; we follow an approach that
produces synchronous dataflow circuits from C code [16]. The
circuits we consider organize units into basic blocks (BBs),
i.e., straight pieces of code with no conditionals; once a BB is
triggered, all its units are guaranteed to receive all their input
data and each dataflow edge between the units performs a
single token transfer. Control flow statements are implemented
between the BBs to form a control flow graph (CFG).

We use the following dataflow units that communicate using
a standard handshake protocol [11]: (1) merge sends a token
nondeterministically into a BB from one of the predecessor
BBs, (2) mux is a deterministic version of a merge with an
additional control input to select the input token, (3) branch
sends the token to one of the successor BBs, as determined
by the BB condition, (4) fork distributes a copy of a token
to each of its successors, either simultaneously (lazy fork), or
whenever they are ready to accept it (eager fork), and (5) join
synchronizes multiple tokens (e.g., operation operands) before
triggering the successor. Buffers are used to store data; they

are characterized by their capacity (i.e., the number of tokens a
buffer can hold) and transparency (indicating whether a buffer
adds sequential delay, or is a pass-through element) [20].
To ensure that a circuit is deadlock-free, each cyclic path
must always have at least one empty buffer slot; additional
buffers may be arbitrarily added without compromising cor-
rectness [11], [16], but only with impact on performance.

B. Resource Sharing in High-Level Synthesis

Standard, statically-scheduled HLS tools [29], [7] perform
scheduling in conjunction with resource allocation and shar-
ing [30]; they trade-off area and performance by deciding
the cycle in which each operation executes and allocating
units accordingly. Dataflow circuits face the same optimization
objectives and area-performance trade-offs; however, there is
no predetermined schedule and no information on when each
operation executes to decide how many units to employ.

Several dataflow-oriented HLS approaches support forms
of resource sharing. Bluespec [2] allows the user to specify
the appropriate control logic around a shared resource using
guarded atomic actions. Nielsen et al. [21] discuss dataflow
construct sharing in the Balsa asynchronous hardware descrip-
tion language. However, these works rely on user-given spec-
ifications and do not address the correctness and performance
aspects of sharing that we consider. In the context of dataflow
machines [1], a processor-like I-structure manages tokens
entering and exiting a shared function; yet, this centralized
mechanism is not available in spatial dataflow circuits.

Edwards et al. [13] present a nondeterministic sharing mech-
anism for dataflow circuits, similar to the one in Figure 1; as
discussed before, this mechanism is not sufficient to guarantee
the absence of deadlock in dataflow circuits obtained out
of imperative code. Cortadella et al. [10] describe sharing
in elastic circuits and build a local scheduler to decide, at
each clock cycle, which input can use the resource. Similarly,
Hansen et al. [14] use a centralized FSM for every shared unit
in their asynchronous pipelines to regulate the multiplexing of
tokens. Both these approaches are applicable only to simple
loops without conditionals, where a predetermined sequence of
inputs can be encoded into a centralized scheduler. In contrast,
this paper presents a sharing method that supports generic HLS
constructs and circuits with control flow—it is thus applicable
for any dataflow circuit obtained out of high-level code.

C. Deciding What to Share in a Dataflow Circuit

Several authors discussed techniques to analyze the timing
of dataflow circuits [20], [4], [24], [23], [5]; some determine
the rate at which dataflow units compute and directly provide
the information on average unit utilization. We here rely on an
approach that maximizes the throughput (i.e., the inverse of
the initiation interval, 1/IT) of each CFG cycle by appropriately
placing and sizing buffers [20]. The approach calculates the
average occupancy of each unit with tokens, i.e., for a given
throughput of a CFG cycle, determines the average number
of tokens that each unit holds in the steady state of the
cycle execution. We can use this information to identify good
candidates for sharing [19]: if the sum of the tokens in two

i Tputf

Mux Merge

X)

stall]

Branch

Loop BB

a[i*x] = i*y;

a) Circuit 1 (Figure 1)

b) Circuit 2

Fig. 2: Figure 2a shows the sharing hardware of the circuit in Figure 1;

Store a

N

for (i = 0; 1 < N; i++)
afe] = i*x*y;
c) Circuit 3

placing transparent buffers on the branch outputs avoids deadlock by

allowing all tokens from a single datapath execution to exit the shared unit and all the computation of the datapath to complete. In circuits
2 and 3 (Figure 2b and 2c), deadlock occurs due to the reordering of tokens from different loop iterations. The solution is to force tokens
to enter the unit in the order of BB execution, i.e., all tokens from one BB must enter the unit before the tokens from the successor BBs.

units of the same type is at most equal to the unit latency (i.e.,
number of sequential stages), it may be possible to use a single
unit without damaging the throughput of the CFG cycle.

In the dataflow circuit in Figure 1, the cyclic path contains
two buffers, so a new token enters the loop on every second
cycle, i.e., the throughput is 1/2. Thus, a new token enters
each multiplier on every second cycle as well; in the steady
state, each multiplier holds two tokens and has two empty
slots (i.e., the occupancy of each multiplier is equal to 2), as
shown in the top right of the figure. It is therefore possible
to implement the two multiplications using a single multiplier
that will accept a new token and start a new multiplication on
every cycle—this multiplier will, in the steady state, always
be busy computing and its occupancy will be equal to 4.

Although such analysis ensures that each shared unit re-
ceives tokens at a rate at which it can compute, it does not rec-
ognize that sharing may postpone a computation: In Figure 1,
prior to sharing, both multiplications execute simultaneously
(i.e., mq,1 and my; are computed at the same time by the
two multipliers); with sharing, one multiplication is delayed
by one clock cycle (in the top right of Figure 1, mg; is
computed one cycle after m;). In some cases, such delays
may compromise throughput, as we will discuss later. More
importantly, as indicated in Section II, nothing in this analysis
guarantees that the dataflow circuit with sharing is deadlock-
free. We will address both of these issues in this paper.

IV. RESOURCE SHARING IN DATAFLOW CIRCUITS
This section details our methodology for deadlock-free and
high-performance resource sharing in dataflow circuits.
A. Sharing in Noncyclic Datapaths

Sharing requires steering data into a unit from multiple pre-
decessors and sending the output to the appropriate successor.

This behavior is realized on the top of Figure 2a, repeating
the situation of Figure 1: the input of the shared unit has a
merge for one of its operands and a mux for all others; they
have as many data inputs as there are shared operations. The
merge informs the muxes and the branch which operand it
took so that they can choose the corresponding operands and
send the result to the correct successor, respectively. The merge
and the branch communicate through a FIFO, with as many
slots as there are pipeline stages in the unit. Yet, as discussed
before, this scheme does not guarantee a functional circuit: a
token may be stalled inside the unit and prevent the others
from exiting, potentially causing deadlock. In this case, as the
successor unit needs to join tokens m4,; and ms ; to compute,
mq,1 cannot exit the unit until mo ; arrives; however, the exact
same token (m,1) is blocking mo ; from ever exiting the unit,
therefore infinitely starving the succeeding store and blocking
the shared multiplier from processing other tokens.

The mechanism on the bottom of Figure 2a guarantees that
all tokens from a noncyclic datapath (i.e., a single BB or
a sequence of nonrepeating BBs) that enter the shared unit
are able to exit it by adding a 1-slot transparent buffer (see
Section III-A), i.e., #-buff, at each branch output. In a single
BB execution, each dataflow edge transfers a single token; the
output edge of the shared unit, on the other hand, does not
honor this property (i.e., it transfers as many tokens as there
are shared operations), but it sends only one token to each
branch output (corresponding to each individual operation in
the original circuit). Hence, the #-buff is sufficient to ensure
that each token can always exit the unit, regardless of the
availability of the successor: if the successor is not ready, the #-
buff will store the token; otherwise, the token will immediately
propagate further. No token will be stalled in the unit, nor will
it block other tokens in the unit; all successor units of the same

BB will be able to receive their data and all BB computation
will successfully complete, exactly as if no units were shared.

B. Sharing in General Datapaths

The methodology above guarantees that the circuit is func-
tional only when sharing within a single BB or a loop iteration;
we here extend this implementation to general programs.

Figures 2b and 2c show two examples where the mechanism
from Section IV-A does not manage to prevent deadlock:
(1) Circuit 2 has a similar problem as discussed before, but
occurring across loop iterations: a token from a successive
iteration (m; 2) blocks the token from the previous iteration
(mg,1) from exiting the shared unit; at the same time, mq 2
cannot proceed before the previous computation completes, so
both tokens indefinitely stall. (2) Circuit 3 has a cycle from
the output of the shared unit to its input. The unit may fill with
tokens and cause deadlock because there is no empty space
for the tokens to move (i.e., the property which guarantees the
absence of deadlock, outlined in Section III-A, is violated, as
no buffer slot on the cycle is empty): the token in the unit
(m1 2) needs to move into ¢-buff on the cycle, but the token
in the #-buff (mq 1, i.e., the input z of M2) cannot move back
into the unit before another token exits.

Both problems are due to tokens entering the shared unit
in an order different than the one specified by the control
flow of the program—some tokens enter the unit before all
tokens from the preceding BBs and prevent their computations
from completing: (1) In circuit 2, instead of consecutively
consuming both tokens from the same BB execution, the unit
inputs some tokens from the following iteration (i.e., next BB)
which prevent one of the previous tokens from ever exiting the
unit. (2) In circuit 3, the token from the first BB execution (i.e.,
first iteration) comes from the shared unit itself. Yet, instead
of consuming this token to execute the first multiplication of
M2, the shared unit keeps taking tokens from the following
iterations (coming from the noncyclic path and performing
multiplications of M1), therefore filling the unit and preventing
the older token from the r-buff from propagating further.

The solution to both problems is to send tokens to the shared
unit in the order specified by the control flow (i.e., program
order): once a BB execution is decided, all its tokens must
be consumed by the shared unit before the tokens from the
following BB. If all tokens from a BB are injected into the
unit before any successive tokens, they are guaranteed to exit
the unit (see Section IV-A). Thus, always sending tokens into
the unit in order of BB execution guarantees the absence of
deadlock for any number of BBs and BB executions.

C. Sharing and Performance

The previous section showed the need to order tokens from
different BBs as they enter a shared unit to prevent deadlock.
The ordering of tokens from the same BB does not compro-
mise the circuit functioning, but may impact performance.

The buffering of the dataflow circuit needs to account for
the operation delays caused by sharing. More importantly, one
needs to make sure that the latency of a throughput-critical
cycle is not increased. In the dataflow circuit in Figure 3,

Computation order: M1, M2
BB 1 Throughput =1/5

Loop BB Computation order M2, M1

Throughput=1/6 X

Ordering across
+ within BBs
3

for (i = @; i < N; i*=x)
a[i] = i*y;

Fig. 3: Performance impact of sharing. The order in which tokens
are sent to the shared unit may impact performance by postponing
the execution of a throughput-limiting computation (in this example,
operation M1 on the cycle). Hence, apart from ordering tokens from
different BBs as they enter a shared unit, we also enforce the ordering
of tokens of the same BB which has the minimal performance impact.

both multiplications execute simultaneously; M1 is on a loop
determining the throughput, equal to 1/5 (because of the
buffer and the 4-stage multiplier on the cycle). If the two
multiplications share a unit, one of them will be postponed
for a clock cycle while the multiplier consumes the inputs of
the other. If the delayed computation is M1, the cycle latency
increases and, consequently, lowers the throughput to 1/6.
Therefore, in addition to enforcing the ordering of opera-
tions from different BBs, as previously described, one could
order operations within each BB as well, as suggested on the
right of Figure 3, such that the throughput impact is minimal.
We incorporate this notion into our sharing strategy in Sec-
tion VI: we use the performance analysis from Section III-C
to choose an ordering which maintains the original throughput
as well as to obtain the optimal buffering that accounts for the
delays caused by sharing. Note that we now implement a total
order of the operations and, thus, the corresponding operands
always arrive aligned to the unit; hence, the muxes at the unit
inputs (see Section IV-A) can be replaced by merges. We will
detail our implementation of the ordering logic in Section V.

D. Extending the Ordering Scheme

The ordering rules described so far ensure the absence
of deadlock by ordering tokens across BBs (Section IV-B);
to ensure the best possible throughput in the presence of
such ordering, we order operations within a BB as well
(Section IV-C). Interestingly, ordering tokens across BBs may,
in particular cases, lower the throughput, as it may limit the
overlapping of operations from different loop iterations. This
is the case in circuit 3 in Figure 2c: One could, in principle,
implement sharing for M1 and M2 with a throughput of 1/2
(i.e., an II of 2) by starting one of the two multiplications
on every consecutive clock cycle. However, our strategy from
Section IV-B lowers the throughput to 1/5—as suggested on
the right of Figure 2c, the first computation of M2 (ms 1) starts
4 cycles after the start of the first computation from M1 (11 1);

. .M2inputs
M3 inputs } "il N2 :r11 inputs
: inl inZI—'.—l i inlin2
PN IR Join : 4

| Join |

Inputs of M1, M2, M3 Inputs of M1, M2, M3

BB1 start BB2 start
[| : :

for (i = @; 1 < N; i++)
M1; M2; //BB1
if (cond) M3; //BB2

a) Sharing implementation

++=*»> Control-only no buffs
— Control-only

b) Optimized implementation

Selector 881 id|/BB2id
BB1 order: M1, M2 Mux - -
BB2 order: M3
reg enable 1
) ¥y) L .
inl in2 sel Parameterizable logic with handshake interfaces

Outputs to
shared unit

D Application-specific (encoded) BB information

BB;q = max(1, [log, B])
BBoraer = Spp x max(1, [log; ST)
BBoperanas = max(1, [logz Spp1)

B: nb of connected BBs
S total nb of ops sharing a unit
Spp: max nb of ops in a single BB

= Data + control
==» Control flow

c) Selector

Fig. 4: Sharing implementation. A specialized in-order network and the selector unit enforce the specified ordering of operations in the
shared unit based on the order of BB execution and the preencoded operation order for each BB.

the next operation from M1 can start on the cycle after the
start of M2. Concretely, our ordering enforces a cycle distance
between two consecutive executions of a single operation to
be greater than the number of cycles between the start of the
first and the start of the last operation within the iteration; if
this value is higher than the initial II, it can constrain it.
Note that our ordering condition from Section IV-B is
sufficient to guarantee the absence of deadlock, yet it is not
always necessary—our generic ordering mechanism could be
replaced by application-specific multiplexing and buffering.
For instance, one could relax the ordering constraint so that
particular executions from different iterations can overlap—
in the example above, allowing an operation from M1 to start
before the operation of M2 from the preceding iteration would
lower the II. The number of overlapping iterations could be
determined based on the cycle distances between operation
executions and the achievable II. Naturally, the search space
for the appropriate ordering, the complexity of the ordering
logic, and the sizes of the buffers around the shared unit would
increase with the number of overlapping iterations. Without
loss of generality, we limit our ordering to the rules from
Sections IV-B and IV-C. As we will later see, our strategy
effectively implements sharing in realistic benchmarks.

V. ORDERING IMPLEMENTATION

In this section, we detail how to implement the previously-
described token ordering when sharing dataflow units.

A. Implementation

To implement the desired ordering between operations shar-
ing a unit, we build an in-order dataflow network that strictly
mimics the control flow of the program; it propagates a data-
less token which triggers the advancement of operands to
the shared unit in a predetermined order only when control
flow reaches the corresponding BB. Each shared operation
is associated with a lazy fork in this network; this fork is
synchronized (using a join) with a particular set of unit inputs.
The fork must be lazy (see Section III-A) so that a token
moves forward and triggers the next fork only after the joined

inputs have been sent to the unit. The forks are separated by
buffers which introduce a 1-cycle sequential delay, i.e., two
forks cannot be active at the same time. Hence, only one set
of inputs to the unit will be active at any given clock cycle; this
activation order corresponds to the desired operation ordering.

The loop in Figure 4a contains three multiplications: M1
and M2 in BB1, and M3 in conditionally executed BB2. The
in-order network which supplies ordering information to the
unit shared between M1, M2, and M3 is shown on the left
of Figure 4a—it implements the orderings {M1, M2} in BB1
and {M3} in BB2. When the execution of BB starts, the first
lazy fork keeps the token until both inputs of M1 become
available and are consumed by the multiplier; only then does
the token move to the next LFork through Buff 1, triggering the
execution of M2 at least once clock cycle later. If the control
flow decides on the execution of BB2, the in-order network
will ensure that M3 executes before M1 and M2 from the
next iteration of BB1. Thus, this in-order network effectively
implements the functionality of the ordering unit in Figure 3.

B. Optimized Implementation

The sharing logic described above may quickly grow in
complexity as each shared unit requires its own in-order
network with as many lazy forks and buffers as there are
shared operations; clearly, it is desirable to unify all networks.
Also, as we will later mention, we implement our approach
in an existing HLS framework which already produces, for
other purposes, an in-order network expressing the dynamic
succession of executed BBs [15], [18]. Thus, we adapt our
implementation to directly leverage this existing network.

Our simplified implementation is shown in Figure 4b. The
network on the left of the figure is what already exists in
the dataflow circuit: it emits tokens corresponding to the BB
succession and, as in our original network, the use of lazy
forks separated by buffers ensures that each BB start signal is
triggered strictly in order. Essentially, the difference compared
to Figure 4a is that the selector receives a single ordering
signal per BB instead of an ordering signal per operand: thus,
every time a BB starts, the selector needs to enforce the

ordering of the corresponding BB operands (preencoded in
the selector unit) before the operands of the subsequent BB.

Figure 4c details the selector unit. It contains a FIFO which
stores the IDs of the incoming BBs as they arrive in program
order and one at a time from the in-order network. The BB id
at the head of the FIFO selects the preencoded BB ordering
information (i.e., a vector with the operand order, BB order,
and the total number of operands of this BB, BB operands).
An internal counter enables the appropriate input ports (mux
input) of the data muxes on the left; a mux port is enabled
only after the previous port has sent a token into the unit. A
BB id is removed from the queue when all its operations have
started executing, moving the successor BB to the head of the
queue and allowing its tokens to enter the shared unit next.

The expressions for the number of bits of the encoded
ordering information are shown in Figure 4c. Typically, only a
few operations share a unit and these values are minor (in this
case, BB id, BB order, and BB operands, encoded in the dotted
boxes, are 1, 4, and 1 bits). The complexity of the multiplexing
logic in the selector follows the same trends; it is usually minor
compared to the 32- or 64-bit data multiplexers (left of the
selector), which are used in any sharing implementation and
are not an overhead of our strategy.

VI. PUTTING IT ALL TOGETHER

Algorithm 1 summarizes our resource sharing strategy.
Initially, we consider every operation as a separate group (i.e.,
unit). Our strategy attempts to merge different groups that can
share the same physical resource without compromising the
throughput of any of the loops as follows: (1) Sharing within
a loop nest, i.e., within a strongly connected component of the
CFG. For every pair of groups that belong to the same loop
nest, we check if their sum of token occupancies (indicated

[

as @) is at most equal to the unit latency L, (line 14 of the
algorithm); if so, the units are underutilized (see Section III-C)
and sharing may be possible without compromising perfor-
mance. If neither of the groups has units on cyclic paths (lines
17-21), the original throughput ©, can always be maintained,;
thus, we topologically order the operations within each BB and
employ the performance analysis from Section III-C to resize
the buffers accordingly (i.e., to account for any operation delay
due to sharing). If any of the units is on a cyclic path (lines
22-30), we use the same performance analysis to choose an
ordering of operations that does not damage the throughput,
i.e., where none of the operations on a throughput-critical
cycle is postponed (see Section IV-C). As soon as such an
ordering is found, the search terminates; the groups will be
merged and the occupancy of the group will be updated (lines
32-36). If all orderings degrade throughput, the merging of
the groups is discarded. This process repeats until no further
merging can be done. The final ordering within each group
corresponds to that found in the last successful merge and
the buffer placement and sizing to that determined in the last
performance analysis run. (2) Sharing across loop nests. In this
step (lines 38-43), we merge every distinct group of one loop
nest with any distinct group of another (if available and not
already merged with another group from the same nest); the

Algorithm 1: Sharing strategy.

1 // Input: units (all units of the same type)
2 // Input: sets (CFG loop nests, i.e., strongly connected
components of the CFG)
3 // Output: globalGroups (sets of operations which share a
resource)
4 // 1. Sharing within a loop nest
5 forall s € sets do
6 // Calculate original throughput and buffers in set
7 Oy, buffs = runPerformanceAnalysis (s)
s // Initialize groups to individual units
9 groups (s) = {u | u € units, u € s}
10 // Grouping of units
1 while groups (s) modified do
12 forall g;, go € groups (s), g; # g» do
13 // If token occupancy sum is at most equal to
the unit latency, sharing is possible
. .
14 ifOg, + ©g4,< Ly then
15 finalOrd = null
16 // Check if any unit on cycle
17 if 1g;.hasCycle and ! g2.hasCycle then
18 // No cyclic paths, sort topologically
19 finalOrd = sort (g; U g2)
20 // Resize buffers
21 Oy ord» buffs = runPerformanceAnalysis (s, ord)
22 else
23 // Search for best group ordering
24 forall ord € possible_orderings (g1 U g2) do
25 // Check if throughput maintained
26 Oy ord buffs = runPerformanceAnalysis (s, ord)
27 if O orq = O then
28 // Ordering found, terminate
29 finalOrd = ord
30 break
31 // Valid ordering found: share
32 if finalOrd != null then
33 // Merge groups and update ordering
34 groups(s).update(gy , g2, 91 U gg, finalOrd)
35 // Update occupancy of merged group
Ld L3 .o
3 Og1Ug2=0g; + Oy,
3 // 2. Sharing across loop nests
38 globalGroups = {}
39 forall s € sets do
40 // Merge every distinct group of one loop nest with
distinct groups of other nests
4 i=0
) forall group € groups (s) do
43 ‘ globalGroups (i++).add (group (s))

44 // 3. Sharing other units

45 // Merge every remaining unit with any existing group
46 =0

47 forall w € {u | u € units, Vs € sets: u ¢ s} do

4 | globalGroups (i++ mod globalGroups.size).add (u)

operation ordering in each BB remains as determined in the
previous step. (3) Sharing other units. We merge units that are
not in any loop with any of the existing groups (lines 46-48).

The first step ensures that sharing never damages the
throughput of any interconnected loops. The second step does
not need throughput analysis as different loop nests execute
consecutively—while final iterations of one loop may overlap
with the initial iterations of another, two operations from
different loop nests never execute simultaneously in the steady
state. The same holds for units that do not belong to any loop.

Our strategy minimizes the number of units under a through-
put constraint. It is adaptable to other optimization objectives
as well, e.g., honoring a resource constraint: if the constraint is
tighter than group count achieved by Algorithm 1, one could
continue grouping until it is met; the associated performance
penalty could be minimized by exploring different groupings.
Our algorithm immediately identifies good sharing candidates
(i.e., underutilized units) and performs an ordering exploration

Benchmark DSPs LUTs FFs Cycle count CP (ns) Exec. time (us)
Naive Shared ratio Naive Shared ratio Naive Shared ratio Naive Shared Naive Shared Naive Shared ratio
atax 10 5 0.50 1970 2076 1.05 2206 1997 091 4140 4459 4.9 4.3 20.3 19.2 0.95
bicg 10 5 0.50 1627 1602 098 2018 1814 0.90 7909 7910 4.6 4.3 36.4 34.0 0.93
gemm 11 5 045 2339 2448 1.05 2500 2491 1.00 68827 68827 5.7 49 3923 3373 0.86
gemver 28 10 0.36 5580 5433 097 6753 5418 0.80 1817 1899 5.1 5.6 9.3 10.6 1.15
gesummy 18 5 0.28 2648 2666 1.01 3163 2528 0.80 7952 8391 5.0 49 39.8 41.1 1.03
2mm 16 5 0.31 3785 4200 1.11 4155 4153 1.00 16610 17325 5.5 5.6 91.4 97.0 1.06
3mm 15 5 0.33 3700 3653 099 3524 3096 0.88 24557 24621 5.2 5.5 127.7 1354 1.06
mvt 10 5 0.50 2017 2029 1.01 2253 1878 0.83 15708 15740 4.9 49 77.0 77.1 1.00
gsum 22 5 0.23 2235 1989 0.89 2980 1708 0.57 2473 2473 5.6 5.8 13.8 14.3 1.04
gsumif 26 5 0.19 2807 2072 0.74 3865 1976 0.51 2338 2419 5.3 5.8 12.4 14.0 1.13

TABLE I: Timing and resources of dataflow circuits without sharing (i.e., Naive, obtained by Dynamatic [17]) and with sharing (i.e., Shared,
this contribution). We measure the cycle count in simulation and obtain the timing and resources from Vivado, after place and route.

only in case of throughput-limiting operations on cycles; it
is therefore effective in optimizing complex graphs with a
large unit count. We here focus on sharing functional units
and reducing the DSP count, but our strategy is applicable to
other types of resources (e.g., memory blocks, LUTs) as well.

VII. EVALUATION

In this section, we evaluate our approach for implementing
resource sharing in dataflow circuits obtained from C code.

A. Methodology and Benchmarks

We evaluate a selection of floating-point kernels from the
PolyBench suite [22] that contain loop nests with different
properties (i.e., loop organization, count, and nest levels)
and computational patterns, thus offering different sharing
opportunities within and across loops. Most kernels have long-
latency loop-carried dependencies due to pipelined floating-
point operations that limit the loop II. Our purpose here is
not to show the superiority of dataflow circuits over statically
scheduled designs but to investigate their sharing capabilities;
nevertheless, we also consider two typical cases where dy-
namic scheduling excels over standard HLS, i.e., gsum and
gsumif, that conditionally compute floating-point polynomial
expressions. The conditional statements incur unpredictable
long-latency, loop-carried dependencies that prevent static
scheduling from achieving high-throughput pipelines; due to
the low throughput, the static solutions can share floating-point
units among the conditionally executed operations [9].

We implement our sharing strategy in Dynamatic, an open-
source HLS tool [17] that synthesizes C code into synchronous
dataflow designs and implements the performance analysis
from Section III-C. Although our sharing technique is appli-
cable to any type of resource and functional unit, our goal
here is to minimize the DSP usage without affecting loop
throughput; we thus apply Algorithm 1 to share every type of
floating-point operation realized in DSPs. We use ModelSim to
measure execution cycle count and for functional verification.
We target a Xilinx Kintex-7 FPGA and use Xilinx floating-
point operations (encapsulated in wrappers with handshake
signals to communicate with other dataflow units). All memory
operations connect to dual-port BRAMs. We obtain the clock
period and resource usage from Vivado after place and route.

B. Results: Effectiveness of the Sharing Strategy

Table I compares dataflow circuits that do not implement
sharing (i.e., circuits produced by Dynamatic) with the circuits

1.2

S ° A® A
Nog (] o A ‘ A
© @ AA

Eos e

s H

<

> 0.6

g DSPs
S04 ® Ffs
5 A LUTs
‘é 0.2 B Naive (DSPs,
Q LUTSs, FFs)
X0

0 0.2 0.4 0.6 0.8 1 12

Resources, normalized

Fig. 5: Execution time and resources of dataflow circuits with
sharing, normalized to the designs without sharing. Our main goal is
to reduce the DSP count, which we successfully achieved.

optimized with our sharing strategy. The circuits without
sharing (Naive) achieve the best possible pipelines (i.e., limited
exclusively by the loop-carried dependencies) and with a
minimal number of cycles. Yet, they employ an individual
functional unit for each operation, reflected in their DSP
usage. In contrast, our designs (Shared) share functional units
among multiple operations of the same type, thus significantly
reducing the number of employed DSPs. Our strategy ensures
that the loop throughput remains unchanged, as evident from
the cycle count, which either remains identical or slightly
increases. This increase is due to the pipeline latency increase,
i.e., some operations using a shared unit execute later than in
the original circuit (see Section I'V-C) or transient effects when
independent loops overlap, i.e., when one loop is ending and
another one is starting, sharing temporarily lowers throughput
as both loops compete for a shared resource (see Section VI).
These effects are perfectly in line with what we described
earlier and arguably acceptable for the significant DSP savings.
The minor differences in clock period (CP) are largely
due to the timing variations caused by FPGA place and
route; the interactions of the in-order network and the selector
unit from Figure 4b sometimes contribute to these variations.
These discrepancies are orthogonal to our work and have been
extensively discussed in the context of the timing analysis we
rely on [20]. In addition to significant DSP reductions, our
designs typically require fewer LUTs and FFs, which indicates
that the complexity of the sharing mechanism (i.e., selector at
unit input, branch at unit output) is minor compared to the
shared computational units with their dataflow wrapper logic
(i.e., the reduction of the wrapper resources compensates for
the sharing mechanism, hence the LUT and FF decrease).
We summarize our main results from Table I in Figure 5,
which shows the execution time (i.e., the product of the CP

Benchmark DSPs LUTs FFs Cycle count CP (ns) Exec. time (us)
Vivado Shared ratio Vivado Shared ratio Vivado Shared ratio Vivado Shared Vivado Shared Vivado Shared ratio
atax 5 5 1.00 388 2076 5.35 762 1997 2.62 5041 4459 33 4.3 16.6 19.2 1.15
bicg 5 5 1.00 425 1602 3.77 824 1814 220 9421 7910 3.3 3 31.1 340 1.09
gemm 5 5 1.00 458 2448 534 837 2491 298 91201 68827 3.2 49 291.8 3373 1.16
gemver 10 10 1.00 1032 5433 526 1631 5418 3.32 2534 1899 34 5.6 8.6 10.6 1.23
gesummy 5 5 1.00 553 2666 4.82 944 2528 2.68 9029 8391 34 49 30.7 41.1 1.34
2mm 5 5 1.00 598 4200 7.02 963 4153 431 24402 17325 33 5.6 80.5 97.0 1.20
3mm 5 5 1.00 666 3653 548 1104 3096 2.80 34803 24621 33 5.5 114.8 1354 1.18
mvt 5 5 1.00 481 2029 422 802 1878 234 18782 15740 33 49 62.0 77.1 1.24
gsum 5 5 1.00 558 1989 3.56 1023 1708 1.67 10067 2473 34 5.8 342 143 042
gsumif 5 5 1.00 542 2072 3.82 963 1976 2.05 10047 2419 3.5 5.8 35.2 14.0 040

TABLE II: Timing and resources of Vivado HLS circuits (i.e., Vivado) and our dataflow circuits with sharing (i.e., Shared, repeated from
Table I). The matching DSP counts indicate that our approach successfully identified all sharing opportunities. The LUT, FF, and CP overheads
of dataflow circuits are expected and orthogonal to our sharing contribution. Most of our benchmarks are regular kernels which do not benefit
from dynamic scheduling; the exceptions are gsum and gsumif, where dynamic scheduling significantly outperforms static scheduling.

and the cycle count) and resources (i.e., DSPs, LUTs, and
FFs) of our designs, normalized to the naive designs without
sharing. All our solutions are Pareto optimal in terms of
DSPs; some designs even dominate their naive counterpart
due to the coincidental reduction in CP. While we opted to
identify sharing opportunities that do not affect throughput, our
sharing mechanism can be easily extended to further explore
the design space and discover other Pareto optimal solutions.

C. Results: Comparison with Vivado HLS

In the previous section, we demonstrated that our method-
ology effectively shares units in dataflow designs. We are now
interested in comparing the capabilities of our sharing strategy
with that of a standard, statically scheduled HLS tool. It should
be noted upfront that, aside from gsum and gsumif, none of
the benchmarks we explore have characteristics that can take
advantage of dynamic scheduling. Hence, it is reasonable to
expect that our circuits incur resource (i.e., LUT and FF) and
timing (i.e., CP) overheads—we already observed these effects
in prior work [9], [16]. Our purpose here is to investigate if
the unit count (i.e., number of DSPs) achieved by our sharing
strategy matches that of state-of-the-art HLS solutions.

We synthesized the benchmarks from Section VII-A with
Vivado HLS [29]; we employ the pipeline directive in all
innermost loops and do not impose any resource constraints.
Hence, the HLS tool maximizes performance (i.e., throughput)
while minimizing the number of units—it shares as many units
as possible and achieves the minimal DSP count for the best
II, which qualitatively matches our strategy from Section VI.

Table II compares the results obtained by Vivado HLS
with dataflow circuits with sharing (i.e., Shared results from
Table I). The Vivado designs employ the exact same number
of DSPs as our solutions, which validates that our strategy
successfully identified all sharing opportunities. None of the
benchmarks suffer due to the operation ordering across BBs
(Section IV-D), which indicates the effectiveness of our ap-
proach in a variety of practical cases. As anticipated, the static
kernels require fewer LUTs and FFs and achieve a lower CP
(typically resulting in a lower total execution time). Our goal
here was to share computational resources (i.e., DSPs) as much
as static HLS does, which we have successfully achieved.

The dynamic designs that implement the irregular bench-
marks (i.e., gsum and gsumif) Pareto-dominate their static

counterparts in execution time by adapting the throughput at
runtime to the actual control outcomes (i.e., they require sig-
nificantly fewer clock cycles to execute, therefore decreasing
the total execution time). Whenever a long-latency conditional
statement is executed, the throughput is temporarily lowered
due to the conditional data dependencies—this lowering allows
the conditional operations to share functional units and reduces
the DSP counts to exactly those of the static kernels.

Surprisingly, all our solutions require fewer clock cycles to
execute than the static solutions—while this effect is expected
for gsum and gsumif, there is no fundamental reason for
the dynamic kernels to execute faster in the other, perfectly
regular, benchmarks. There are two explanations: (1) Some-
times, our designs overlap different loops more effectively
than Vivado HLS; a similar overlapping could be achieved in
Vivado HLS using the dataflow pragma, but this optimization
limits resource sharing [28] and prevents us from comparing
DSP-optimal pipelined designs. (2) In some cases, the retiming
algorithms of Vivado place an additional register on the critical
loops and increase the II; we employ a different register
placement strategy [20] which does not need this register.
These effects are orthogonal to our contribution and have
only a quantitative effect on the results; the matching DSP
counts of the static and dynamic designs clearly indicate the
effectiveness of our sharing approach in achieving the best
possible (i.e., minimal) number of functional units.

VIII. CONCLUSIONS

Resource sharing is one of the key optimizations in high-
level synthesis; dataflow circuits could be competitive in this
context only if they could exploit this optimization as well.
In this work, we present a resource sharing methodology for
dataflow circuits obtained from C code; our key contribution
is a sharing mechanism that achieves correct, deadlock-free
execution. In addition, we present a method to identify sharing
opportunities that do not compromise performance. On a set
of benchmarks, we demonstrate the ability of our approach
to significantly improve the resource efficiency of dataflow
circuits and to match the sharing capabilities of a standard HLS
tool. Our sharing mechanism is key to achieving different area-
performance tradeoffs as well as to making dataflow designs
competitive in terms of computational resources (i.e., func-
tional units and the corresponding DSP count) with circuits
achieved using standard HLS techniques.

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

REFERENCES

Arvind and R. S. Nikhil. Executing a program on the MIT tagged-token
dataflow architecture. IEEE Transactions on Computers, 39(3):300-18,
Mar. 1990.

Arvind, R. S. Nikhil, D. L. Rosenband, and N. Dave. High-level
synthesis: an essential ingredient for designing complex ASICs. In
Proceedings of the International Conference on Computer-Aided Design,
pages 775-82, San Jose, Calif., Nov. 2004.

M. Budiu, P. V. Artigas, and S. C. Goldstein. Dataflow: A complement
to superscalar. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, pages 177-86, Austin,
Tex., Mar. 2005.

D. Bufistov, J. Cortadella, M. Kishinevsky, and S. Sapatnekar. A
general model for performance optimization of sequential systems. In
Proceedings of the International Conference on Computer-Aided Design,
pages 362-69, San Jose, Calif., Nov. 2007.

J. Campos, G. Chiola, J. M. Colom, and M. Silva. Properties and
performance bounds for timed marked graphs. “IEEE Transactions
on Circuits and Systems I: Fundamental Theory and Applications”,
39(5):386-401, May 1992.

A. Canis, S. D. Brown, and J. H. Anderson. Modulo SDC scheduling
with recurrence minimization in high-level synthesis. In Proceedings
of the 23rd International Conference on Field-Programmable Logic and
Applications, pages 1-8, Munich, Sept. 2014.

A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson. LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems. ACM
Transactions on Embedded Computing Systems, 13(2):24:1-24:27, Sept.
2013.

L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Theory of latency-insensitive design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, CAD-20(9):1059-76,
Sept. 2001.

J. Cheng, L. Josipovi¢, G. A. Constantinides, P. Ienne, and J. Wickerson.
Combining dynamic & static scheduling in high-level synthesis. In
Proceedings of the 28th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 288-98, Seaside, Calif., Feb. 2020.
J. Cortadella, M. Galceran-Oms, and M. Kishinevsky. Elastic systems. In
Proceedings of the 10th ACM/IEEE International Conference on Formal
Methods and Models for Codesign, pages 149-58, July 2010.

J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of
synchronous elastic architectures. In Proceedings of the 43rd Design
Automation Conference, pages 657-62, San Francisco, Calif., July 2006.
D. Edwards and A. Bardsley. Balsa: An asynchronous hardware
synthesis language. The Computer Journal, 45(1):12-18, Jan. 2002.

S. A. Edwards, R. Townsend, and M. A. Kim. Compositional dataflow
circuits. In Proceedings of the 15th ACM-IEEE International Conference
on Formal Methods and Models for System Design, pages 175-84,
Vienna, Sept. 2017.

J. Hansen and M. Singh. Multi-token resource sharing for pipelined
asynchronous systems. In Proceedings of the Design, Automation and

[15]

[16]

[17]

(18]

(19]

(20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

(28]

[29]
(30]

Test in Europe Conference and Exhibition, pages 1191-96, Dresden,
Mar. 2012.

L. Josipovi¢, P. Brisk, and P. Ienne. An out-of-order load-store queue for
spatial computing. ACM Transactions on Embedded Computing Systems,
16(5s):125:1-125:19, Sept. 2017.

L. Josipovi¢, R. Ghosal, and P. Ienne. Dynamically scheduled high-level
synthesis. In Proceedings of the 26th ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, pages 127-36, Monterey,
Calif., Feb. 2018.

L. Josipovi¢, A. Guerrieri, and P. Ienne. Dynamatic: From C/C++ to
dynamically scheduled circuits. In Proceedings of the 28th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pages 1—
10, Seaside, Calif., Feb. 2020.

L. Josipovi¢, A. Guerrieri, and P. Ienne. From C/C++ code to high-
performance dataflow circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Aug. 2021. To appear.

L. Josipovi¢, A. Guerrieri, and P. Ienne. Synthesizing general-purpose
code into dynamically scheduled circuits. IEEE Circuits and Systems
Magazine, 21(2):97-118, May 2021.

L. Josipovi¢, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella.

Buffer placement and sizing for high-performance dataflow circuits. In
Proceedings of the 28th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, pages 186-96, Seaside, Calif., Feb. 2020.
S. F. Nielsen, J. Sparsg, and J. Madsen. Behavioral synthesis of
asynchronous circuits using syntax directed translation as backend. IEEE
Transactions on Very Large Scale Integration Systems, 17(2):248-61,
Feb. 2009.

L.-N. Pouchet. Polybench: The polyhedral benchmark suite, 2012.

C. V. Ramamoorthy and G. S. Ho. Performance evaluation of asyn-
chronous concurrent systems using Petri nets. [EEE Transactions on
Software Engineering, 6(5):440-49, Sept. 1980.

C. Ramchandani. Analysis of asynchronous concurrent systems by
timed Petri nets. Technical Report Project MAC Technical Report 120,
Massachusetts Institute of Technology, Feb. 1974.

B. R. Rau. Iterative modulo scheduling. International Journal of Parallel
Programming, 24(1):3—-64, Feb. 1996.

J. Sparsg. Current trends in high-level synthesis of asynchronous
circuits. In Proceedings of the 16th IEEE International Conference on
Electronics, Circuits, and Systems, pages 347-50, Yasmine Hammamet,
Dec. 2009.

M. Vijayaraghavan and Arvind. Bounded dataflow networks and
latency-insensitive circuits. In Proceedings of the 9th International
Conference on Formal Methods and Models for Codesign, pages 171—
80, Cambridge, MA, July 2009.

Xilinx Inc. Vivado Design Suite User Guide: High-Level Synthesis,
2018.

Xilinx Inc. Vivado High-Level Synthesis, 2018.

Z. Zhang and B. Liu. SDC-based modulo scheduling for pipeline
synthesis. In Proceedings of the 32nd International Conference on
Computer-Aided Design, pages 211-18, San Jose, Calif., Nov. 2013.

